Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g (8f8g 8 8 ) (0.1) {f, g} = L... [ji - [ji; =1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But,…
Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g (8f8g 8 8 ) (0.1) {f, g} = L... [ji - [ji; =1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie].
Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g (8f8g 8 8 ) (0.1) {f, g} = L... [ji - [ji; =1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie].
Atsiliepimai
Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
Kainos garantija
Ženkliuku „Kainos garantija” pažymėtoms prekėms Knygos.lt garantuoja geriausią kainą. Jei identiška prekė kitoje internetinėje parduotuvėje kainuoja mažiau - kompensuojame kainų skirtumą. Kainos lyginamos su knygos.lt nurodytų parduotuvių sąrašu prekių kainomis. Knygos.lt įsipareigoja kompensuoti kainų skirtumą pirkėjui, kuris kreipėsi „Kainos garantijos” taisyklėse nurodytomis sąlygomis. Sužinoti daugiau
Elektroninė knyga
22,39 €
DĖMESIO!
Ši knyga pateikiama ACSM formatu. Jis nėra tinkamas įprastoms skaityklėms, kurios palaiko EPUB ar MOBI formato el. knygas.
Svarbu! Nėra galimybės siųstis el. knygų jungiantis iš Jungtinės Karalystės.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Atsiliepimai